Vertex operator algebras and the Verlinde conjecture

نویسنده

  • Yi-Zhi Huang
چکیده

We prove the Verlinde conjecture in the following general form: Let V be a simple vertex operator algebra satisfying the following conditions: (i) V(n) = 0 for n < 0, V(0) = C1 and V ′ is isomorphic to V as a V -module. (ii) Every N-gradable weak V -module is completely reducible. (iii) V is C2-cofinite. (In the presence of Condition (i), Conditions (ii) and (iii) are equivalent to a single condition, namely, that every weak V -module is completely reducible.) Then the matrices formed by the fusion rules among the irreducible V -modules are diagonalized by the matrix given by the action of the modular transformation τ 7→ −1/τ on the space of characters of irreducible V -modules. Using this result, we obtain the Verlinde formula for the fusion rules. We also prove that the matrix associated to the modular transformation τ 7→ −1/τ is symmetric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex operator algebras, fusion rules and modular transformations

We discuss a recent proof by the author of a general version of the Verlinde conjecture in the framework of vertex operator algebras and the application of this result to the construction of modular tensor tensor category structure on the category of modules for a vertex operator algebra.

متن کامل

Vertex operator algebras, the Verlinde conjecture, and modular tensor categories.

Let V be a simple vertex operator algebra satisfying the following conditions: (i) V(n)) = 0 for n < 0, V(0)=C1, and the contragredient module V' is isomorphic to V as a V-module; (ii) every N-gradable weak V-module is completely reducible; (iii) V is C(2)-cofinite. We announce a proof of the Verlinde conjecture for V, that is, of the statement that the matrices formed by the fusion rules among...

متن کامل

Vertex Operator Algebras , the Verlinde Conjecture and Modular

Let V be a simple vertex operator algebra satisfying the following conditions: (i) V(n) = 0 for n < 0, V(0) = C1 and the contragredient module V ′ is isomorphic to V as a V -module. (ii) Every N-gradable weak V -module is completely reducible. (iii) V is C2-cofinite. We announce a proof of the Verlinde conjecture for V , that is, of the statement that the matrices formed by the fusion rules amo...

متن کامل

A Jacobi identity for intertwining operator algebras

We find a Jacobi identity for intertwining operator algebras. Most of the main properties of genus-zero conformal field theories, including the main properties of vertex operator algebras, modules, intertwining operators, Verlinde algebras, and fusing and braiding matrices, are incorporated into this identity. We prove that intertwining operators for a suitable vertex operator algebra satisfy t...

متن کامل

To Vertex Operator Algebras

In this exposition, we continue the discussions of Dong [D2] and Li [L]. We shall prove an S3-symmetry of the Jacobi identity, construct the contragredient module for a module for a vertex operator algebra and apply these to the construction of the vertex operator map for the moonshine module. We shall introduce the notions of intertwining operator, fusion rule and Verlinde algebra. We shall al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004